Relevance-aware Diverse Query Generation for Out-of-domain Text Ranking

Jia-Huei Ju¹, Chao-Han Huck Yang², Szu-Wei Fu², Ming-Feng Tsai³, Chuan-Ju Wang⁴

University of Amsterdam¹, NVIDIA Research², National Chengchi University³, Academia Sinica⁴

Out-of-domain Passage Re-ranking

The challenges

- ✓ Task adaptation: **Heterogenous tasks** lead to different query-document relevancy.
- ✓ Domain adaptation: **Domain-specific** knowledge in the corpus.

Pseudo-relevant query generation

- ✓ Large models with in-context examples (e.g., InPars, PrPG).
- ✓ Small models fine-tuned on MS MARCO (40M ad-hoc search labels).

How can we squeeze more information from MS MARCO?

- ✓ Relevance-aware and diverse query generation.
 ✓ How to use these "document-centric" data (i.e., ^(d, q⁺, q⁻))?

Document

(Title) animals environment general health health general weight philosophy ethics. (*Text*) Being vegetarian helps the environment ... Modern farming is ...

Relevance-aware Queries

1.0 why do you think meat is bad for a planet earth 0.9 what is the philosophy of vegetarian

. . . 0.7 what is a vegetarian diet? 0.6 what is deforestation in asian countries

0.1 what is an asian diet 0.0 what is the difference between food and a burger

Data augmentation: Relevance-aware diverse query generation (ReadQG)

Generalize the query generation process

Generate query that relevance is r (e.g., r = 1 means relevant query generation, see Fig.1).

Soft-prompt tuning serves as relevance-aware signals

- ✓ Instruction soft prompt: P_{inst}
- ✓ **Relevance soft prompt** (function) : $P_{rel}(r)$

Learning for diverse query generation

- ✓ Semi-supervised document-centric pairs: $(d, q^+, ..., q^-)$
- In addition to standard MLE, we consider

- Self-contrastive: maximize distances $\cos(h_{q^{(r=0)}}, h_{q^{(r=1)}})$
- Sequence calibration: diversify MLE

	*		
P_{inst} $P_{rel}(r)$	$\operatorname{Embed}(d)$	[B] $\hat{q}^{(r)}$ [E]	[B] $\hat{q}^{(r')}$ [E]

Domain-adaptation: Fine-tune new re-ranking models

Given synthetic document centric pairs $(d, d \rightarrow [\hat{q}^{(r=1)}, \hat{q}^{(r=0)}])$

- Standard triplet with binary cross-entropy
 - $\mathcal{L}_{bce} = -\log P_F(\hat{q}, d) + \log P_F(\hat{q}, d^-)$

✓ Query-based margin ranking loss

$$\mathscr{L}_{mr} = \max\left(0, \epsilon - F(\hat{q}, d)\right); \quad \epsilon = F(\hat{q}, \hat{q}^{-})$$

Experiments

Experimental setups

✓ First-stage retrieval: BM25 top-100

✓ Models: FlanT5-base + MiniLM-MSMARCO

Results on BEIR

- Domain adaptation with limited compute.
- Negative queries have potential to improve.

	Objectives		Params (M)	nDCG@10					
Retrieval + Re-ranking (synthetic data)	(\hat{q}, d)	(\hat{q}, d, \hat{q}^-)	Gen./Rank	NFC	FQA	ARG	SCD	SCF	Avg.
BM25	-	-	-	32.5	23.6	41.4	15.8	66.5	36.0
BM25 + MiniLM-MS			-/0.2M	35.0	34.7	41.7	16.6	68.8	39.4
BM25 + MiniLM-MS (InPars-v2 data)	1	×	6B / 0.2M	35.4	35.2	42.3	16.6	69.8	39.8
BM25 + MiniLM-MS (ReadQG)	1	×	220M / 0.2M	35.4	34.0	42.8	15.7	71.4	39.8
BM25 + MiniLM-MS (ReadQG)	1	1	220M / 0.2M	35.5	34.4	49.6	16.7	71.6	41.6

RepL4NLP 2024 @ The 62nd Annual Meeting of the Association for Computational Linguistics