Accurate Neural Network Option Pricing Methods with Control Variate Techniques and Data Synthesis/Cleaning with Financial Rationality

Chia-Wei Hsu, Tian-Shyr Dai, Chuan-Ju Wang, Ying-Ping Chen

The 33rd ACM International Conference on Information and Knowledge Management, October 21–25, 2024

01

Introduction

What are options? Challenges in Pricing Options

What are options?

Strike Price

- Financial instruments giving the right to buy or sell an underlying assets at a specified price on a maturity date.
- Categories
 - In the Money (ITM): Has intrinsic value and time value.
 - Out of the Money (OTM): No intrinsic value, only time value.
- Components
 - Intrinsic Value: Immediate payoff if exercised.
 - Time Value: Future potential until expiration.
- Take a call option as an example ...

In	the	case	of	a	call	option
					Line at a set of	tura Arrent Data a

	S&P 5	500 II	NDEX	((^sp	X)			Und	aeriyi	ng	Asset Price) j								
	2024-10	0-17 14	:31:34	ET (Dela	yed)			Bi	d: 5845.1	1699	Ask: 5847.5898	Vol: 0		L	ast: 5,8 4	6.37	Cha	nge: +3 .	9001 (+0).0668%)
	Optio	ons C	hain		Stri	ke F	Price	:↓										Tot	al Recor	ds: 2498
	Calls				Cal	l Op	otion	Pric	ce↑	Т	hu Oct 31 2024 🗸	Puts								
1	Last	Net	Bid	Ask	Vol	IV	Delta	Gamma	Int		Strike	Last	Net	Bid	Ask	Vol	IV	Delta	Gamma	Int
	4,434.3	+0	4441.4	4455.2	0	2.09	0.9999	0	2		SPXW 1400.000	0.05	+0	0	0.05	0	1.97	-0.0001	0	586
MII	0	+0	4241.2	4255.6	0	0	0.9999	0	1		SPXW 1600.000	0.05	+0	0	0.05	0	1.79	-0.0001	0	861
	3,920.59	9 +0	4042.2	4056	0	1.73	0.9999	0	1		SPXW 1800.000	0.15	+0	0	0.05	0	1.63	-0.0001	0	379
S _t K																				
trinsic	21.17	-0.78	21.1	21.3	89	0.11	0.2836	0.0027	429		SPXW 5930.000	85.4	-11.9	92.8	95.6	1	0.11	-0.7164	0.0027	14
lue .	22.48	+2.08	19.6	19.8	38	0.11	0.2693	0.0027	277		SPXW 5935.000	89.3	+0	96.2	99.1	0	0.11	-0.7307	0.0027	4
	22.02	+3.07	18.1	18.4	132	0.11	0.2552	0.0026	619		SPXW 5940.000	130.61	+0	99.8	102.6	0	0.11	-0.7448	0.0026	12
IX	14.4	+0	16.7	17	0	0.11	0.2415	0.0026	267		SPXW 5945.000	0	+0	103.4	106.3	0	0.11	-0.7585	0.0026	0
	16	-0.35	15.4	15.7	170	0.11	0.2281	0.0025	6978		SPXW 5950.000	95.5	-16.1	107.3	109.8	10	0.11	-0.7719	0.0025	471
	18.34	+3.24	14.2	14.5	71	0.1	0.2151	0.0024	240		SPXW 5955.000	100	-15.35	110.8	113.8	1	0.11	-0.7849	0.0024	1
	15	+1	13.1	13.3	143	0.1	0.2025	0.0023	1142		SPXW 5960.000	125.54	+0	114.7	117.6	0	0.11	-0.7975	0.0023	11
NTO																				
	0.1	+0	0	0.1	0	0.28	0.0004	0	43		SPXW 7000.000	0	+0	1133.6	1148.1	0	0.32	-0.9996	0	0
S _t	0.2	+0	0	0.1	0	0.32	0.0002	0	403		SPXW 7200.000	0	+0	1333.2	1347.7	0	0.37	-0.9998	0	0
rinsic = 0	0.05	+0	0	0.05	0	0.34	0.0001	0	751		SPXW 7400.000	1,632.05	5 +0	1532.5	1547.3	0	0.38	-0.9999	0	0
ue ⁻ c	0.07	+0.02	0	0.1	7	0.4	0.0001	0	34		SPXW 7600.000	1,729.75	5-12.8	1732.4	1746.9	7	0.45	-0.9999	0	4
	0.05	+0	0	0.05	0	0.41	0.0001	0	1123		SPXW 7800.000	0	+0	1931.E	1947.2	0	0.51	-0.9999	0	0

	th	e	ca	S	e (of	a ca		optior	1							
<u></u> K	S&P	500 II	NDEX	(^sp	x)												
trinsic Valu	e 2024-1	0-17 14	:54:35 E	T (Dela	ayed)		Bid	: 5849.3	3901 Ask: 5851.3501	Vol: 0			Last: 5	,850.29) (hange: +7.82 (+0	.1338%)
Profit	Options Chain Time to N Calls Call Opti			o Maturit otion Pric	Maturity ↓ tion Price↓ Fri Oct 18 2024 ∧		Puts						Total Rec	ords: 32			
	Last	Net	Bid	Ask	Vol	IV	Delta Gamma	Int	Strike	Last	Net	Bid	Ask	Vol	IV	Delta Gamma	Int
0 S, B	9.9	-3.05	9.7	10.1	1,339	0.1	0.4687 0.0144	462	SPX 5855.000	13.9	-8.15	12	12.5	1,987	0.1	-0.5295 0.0144	362
Profit	Calls								Fri Nov 15 2024 🔿	Puts							
	Last	Net	Bid	Ask	Vol	IV	Delta Gamma	Int	Strike	Last	Net	Bid	Ask	Vol	IV	Delta Gamma	Int
	106.98	+0.38	106.1	107	50	0.15	0.5353 0.0016	418	SPX 5855.000	85.7	-9.95	89.5	90.2	8	0.15	-0.4648 0.0016	241
S _t	Calls								Fri Dec 20 2024 🔿	Puts							
	Last	Net	Bid	Ask	Vol	IV	Delta Gamma	Int	Strike	Last	Net	Bid	Ask	Vol	IV	Delta Gamma	Int
	162.1	-1.45	163.4	164	196	0.15	0.5557 0.0011	3772	SPX 5855.000	123.5	-6.85	124.3	124.9	128	0.15	-0.4451 0.0011	3896

Time Value

https://www.cboe.com/delayed_quotes/spx/quote_table

Challenges in Pricing Options

- Option pricing is crucial for market efficiency.
- Model-based approaches suffers from model misspecification problem.

Black, F. and Scholes, M. (1973) The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81, 637-654 Kou, S. G. 2002. A jump-diffusion model for option pricing. Management Science 48(8):1086–1101.

Model-free approaches without rationality may have arbitrage opportunities.

Liu, S., Oosterlee, C. W., & Bohte, S. M. (2019). Pricing options and computing implied volatilities using neural networks. Risks, 7(1), 16.
Wei, X., Xie, Z., Cheng, R., & Li, Q. (2020). A cnn based system for predicting the implied volatility and option prices.
Ge, M., Zhou, S., Luo, S., & Tian, B. (2021, November). 3D Tensor-based Deep Learning Models for Predicting Podion Price. In 2021 International Conference on Information Science and Communications

Model-free approaches with rationality may require unnecessary synthesized data.

Yang, Y., Zheng, Y., & Hospedales, T. (2017, February). Gated neural networks for option pricing: Rationality by design. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1). Ackerer, D., Tagasovska, N., & Vatter, T. (2020). Deep smoothing of the implied volatility surface. Advances in Neural Information Processing Systems, 33, 11552-11563. Zheng, Y., Yang, Y., & Chen, B. (2021, August). Incorporating prior financial domain knowledge into neural networks for implied volatility surface prediction. In Proceedings of the 27th ACM SIGKDD Conference or Knowledge Discovery & Data Mining (pp. 3968-3975).

• Stale price in illiquid markets may reduce pricing accuracy.

02

Proposed Method

Control variate approach Time value no-arbitrage constraints Remove unnecessary synthesized data Kink of time value surface Cleaning data

TL

Control Variates Approach

Time value based no-arbitrage conditions

Time value based neural network

$$\begin{aligned} \frac{\partial \mathsf{TV}}{\partial K} &= \frac{\partial \mathsf{OV}}{\partial K} - \frac{\partial (S_t - K)}{\partial K} \ge -1 - (-1) = 0. \end{aligned} \qquad \mathsf{C1} \begin{array}{l} \frac{\partial \mathsf{TV}}{\partial K} &= \frac{\partial y_i}{\partial K} \\ &= \frac{1}{S} e^{\tilde{w}} \sigma_1' (\tilde{b} + \frac{K}{S} e^{\tilde{w}}) \sigma_2 (\tilde{b} + \tau e^{\tilde{w}}) e^{\hat{w}} \ge 0 \end{aligned} \\ \frac{\partial^2 \mathsf{TV}}{\partial^2 K} &= \frac{\partial^2 \mathsf{OV}}{\partial^2 K} - \frac{\partial^2 (S_t - K)}{\partial^2 K} = f(S_T | S_t, \tau) - 0 \ge 0. \end{aligned} \qquad \mathsf{C2} \begin{array}{l} \frac{\partial^2 \mathsf{TV}}{\partial k} &= \frac{\partial^2 y_i}{\partial^2 K} \\ &= \frac{1}{S} e^{2\tilde{w}} \sigma_1'' (\tilde{b} + \frac{K}{S} e^{\tilde{w}}) \sigma_2 (\tilde{b} + \tau e^{\tilde{w}}) e^{\hat{w}} \ge 0 \end{aligned} \\ \frac{\partial \mathsf{TV}}{\partial \tau} &= \frac{\partial \mathsf{OV}}{\partial \tau} - \frac{\partial \mathsf{IV}}{\partial \tau} = \frac{\partial \mathsf{OV}}{\partial \tau} - \frac{S_t - K}{\partial \tau} \ge 0. \end{aligned} \qquad \mathsf{C3} \begin{array}{l} \frac{\partial \mathsf{TV}}{\partial \tau} &= e^{\tilde{w}} \sigma_1 (\tilde{b} + \frac{K}{S} e^{\tilde{w}}) \sigma_2 (\tilde{b} + \tau e^{\tilde{w}}) e^{\hat{w}} \ge 0, \end{aligned} \\ \frac{\partial \mathsf{IIV}}{\partial \tau} &= \frac{\partial \mathsf{OV}}{\partial \tau} - \frac{\mathsf{IIV}}{\delta \tau} = S_t - S_t = 0. \end{aligned} \qquad \mathsf{C3} \begin{array}{l} \frac{\partial \mathsf{IV}}{\partial \tau} &= e^{\tilde{w}} \sigma_1 (\tilde{b} + \frac{K}{S} e^{\tilde{w}}) \sigma_2 (\tilde{b} + \tau e^{\tilde{w}}) e^{\hat{w}} \ge 0, \end{aligned} \\ \frac{\sigma_1'(x)}{\sigma_1} &= \frac{1}{2} \left(1 + \frac{x}{\sqrt{x^2 + \beta}} \right) > 0, \text{ since } \left| \frac{x}{\sqrt{x^2 + \beta}} \right| < 1 \end{aligned} \\ \frac{\sigma_1''(x)}{\sqrt{x^2 + \beta}} &= \frac{1}{2} \left(\frac{\beta}{\sqrt{x^2 + \beta^3}} \right) > 0, \end{aligned} \\ \frac{\sigma_1''(x)}{\sigma_2'(x)} &= \sigma_2(x)(1 - \sigma_2(x)) > 0 \end{aligned}$$

тз

Control Variates Approach

Handle kink of time value surface by supplementary data

Data Cleaning

Trade-off between data quality and quantity

03

Experiments

Datasets Training Setting Results on S&P 500 Option Results on TAIEX Option

Datasets & Environment

TAIEX Index Option

2014 - 2021 Option: TXO from Taiwan Future Exchange Underlying: TXF from Taiwan Future Exchange Risk-Free Rate: Bank of Taiwan

Environment

OS: Linux Memory: 128 GB CPU: 2 * AMD EPYC 7702P 64-Core Processors

S&P 500 Index Option

2010 - 2016 Option: S&P 500 from OptionMetric Underlying: S&P 500 from Yahoo Finance Dividend Yield Rate: S&P 500 from OptionMetric Risk-Free Rate: U.S. Department of the Treasury

Evaluation Metrics

MSE, MAPE

		Training Set			Testing Set		
Model	Error	Overall	ITM	OTM	Overall	ITM	OTM
BS	MSE	75.31	97.21	31.89	78.01	99.86	35.08
[5]	MAPE(%)	48.66	3.60	144.28	50.33	3.67	149.48
Variance Gamma	MSE	17.66	20.03	11.76	19.94	22.19	14.41
[22]	MAPE(%)	15.04	2.71	40.65	16.43	2.84	44.55
Kou's Jump	MSE	14.47	16.34	10.02	16.7	18.49	12.61
[19]	MAPE(%)	12.23	2.18	32.39	14.00	2.29	37.70
Multi without syn.	MSE	113.29	135.15	70.52	117.15	139.07	72.74
[29]	MAPE(%)	10.57	2.74	26.92	13.95	3.05	36.57
Multi with syn.	MSE	8.52	11.27	2.95	11.45	13.88	6.48
[29]	MAPE(%)	5.93	1.10	15.65	9.66	1.44	26.29
CV with supplement	MSE	3.78	3.26	4.93	5.14	4.71	6.18
but without redundant syn.	MAPE(%)	7.66	0.89	21.33	9.33	1.19	25.80
CV with supplement	MSE	5.12	5.67	4.03	7.5	8.68	5.68
and redundant syn.	MAPE(%)	7.25	1.50	18.85	9.81	1.91	25.58
CV with redundant syn.	MSE	9.26	10.97	6.19	117.5	179.34	6.64
but without supplement	MAPE(%)	7.36	2.17	17.81	9.72	2.53	24.26
CV uses one NN	MSE	92.35	115.26	48.25	99.65	121.9	58.55
	MAPE(%)	23.16	5.69	60.05	27.51	5.86	72.80

		Tra	aining Se	et	Testing Set			
Model	Error	Overall	ITM	OTM	Overall	ITM	OTM	
BS	MSE	75.31	97.21	31.89	78.01	99.86	35.08	
[5]	MAPE(%)	48.66	3.60	144.28	50.33	3.67	149.48	
Variance Gamma	MSE	17.66	20.03	$11.76 \\ 40.65$	19.94	22.19	14.41	
[22]	MAPE(%)	15.04	2.71		16.43	2.84	44.55	
Kou's Jump	MSE	14.47	16.34	10.02	16.7	18.49	12.61	
[19]	MAPE(%)	12.23	2.18	32.39	14.00	2.29	37.70	

Multi with syn.	MSE	8.52	11.27	2.95	11.45	13.88	6.48
[29]	MAPE(%)	5.93	1.10	15.65	9.66	1.44	26.29
CV with supplement	MSE	3.78	3.26	4.93	5.14	4.71	6.18
but without redundant syn.	MAPE(%)	7.66	0.89	21.33	9.33	1.19	25.80

Yang, Y., Zheng, Y., & Hospedales, T. (2017, Februar: Gated neural networks for option pricing: Rationalit by design. In Proceedings of the AAAI conference or artificial intelligence (Vol. 31, No. 1).

		Tr	aining Se	et	Te	Testing Set		
Model	Error	Overall	ITM	OTM	Overall	ITM	OTM	
BS	MSE	75.31	97.21	31.89	78.01	99.86	35.08	
[5]	MAPE(%)	48.66	3.60	144.28	50.33	3.67	149.48	
Variance Gamma	MSE	17.66	20.03	$11.76 \\ 40.65$	19.94	22.19	14.41	
[22]	MAPE(%)	15.04	2.71		16.43	2.84	44.55	
Kou's Jump	MSE	14.47	16.34	10.02	<u>16.7</u>	18.49	12.61	
[19]	MAPE(%)	12.23	2.18	32.39	14.00	2.29	37.70	
Multi with syn.	MSE	8.52	11.27	2.95	11.45	13.88	6.48	
[29]	MAPE(%)	5.93	1.10	15.65	9.66	1.44	26.29	
CV with supplement	MSE	3.78	3.26	4.93	5.14	4.71	6.18	
but without redundant syn.	MAPE(%)	7.66	0.89	21.33	9.33	1.19	25.80	

		Tr	aining Se	et	Te	Testing Set		
Model	Error	Overall	ITM	OTM	Overall	ITM	OTM	
BS	MSE	75.31	97.21	31.89	78.01	99.86	35.08	
[5]	MAPE(%)	48.66	3.60	144.28	50.33	3.67	149.48	
Variance Gamma	MSE	17.66	20.03	$11.76 \\ 40.65$	19.94	22.19	14.41	
[22]	MAPE(%)	15.04	2.71		16.43	2.84	44.55	
Kou's Jump	MSE	14.47	16.34	10.02	16.7	18.49	12.61	
[19]	MAPE(%)	12.23	2.18	32.39	14.00	2.29	37.70	
Multi with syn.	MSE	8.52	11.27	2.95	11.45	13.88	6.48	
[29]	MAPE(%)	5.93	1.10	15.65	9.66	1.44	26.29	
CV with supplement	MSE	3.78	3.26	4.93	5.14	4.71	6.18	
but without redundant syn.	MAPE(%)	7.66	0.89	21.33	9.33	1.19	25.80	

		Tr	aining Se	t	Testing Set				
Model	Error	Overall	ITM	ОТМ	Overall	ITM	OTM		
			Wit	hout sy	nthetic d	ata.			
				With sy	nthetic d	ata. J			
Multi without syn.	MSE	113.29	135.15	70.52	117.15	139.07	72.74		
[29]	MAPE(%)	10.57	2.74	26.92	13.95	3.05	36.57		
Multi with syn.	MSE	8.52	11.27	2.95	11.45	13.88	6.48		
[29]	MAPE(%)	5.93	1.10	15.65	9.66	1.44	26.29		
CV with supplement	MSE	3.78	3.26	4.93	5.14	4.71	6.18		
but without redundant syn.	MAPE(%)	7.66	0.89	21.33	9.33	1.19	25.80		
CV with supplement and redundant syn.	MSE	5.12	5.67	4.03	7.5	8.68	5.68		
	MAPE(%)	7.25	1.50	18.85	9.81	1.91	25.58		

degrade

prove

		Tr	aining Se	t	Т	esting Set	ing Set	
Model	Error	Overall	ITM	OTM	Overall	ITM	OTM	
-								
_								
	Ablat	ion Study	/					
CV with supplement	MSE MADE(97)	3.78	3.26	4.93	5.14	4.71	6.18	
but without redundant syn.	MAPE(%)	7.00	0.89	21.55	9.55	1.19	25.80	
CV with supplement	MSE	5.12	5.67	4.03	7.5	8.68	5.68	
and redundant syn.	MAPE(%)	7.25	1.50	18.85	9.81	1.91	25.58	
CV with redundant syn.	MSE	9.26	10.97	6.19	117.5	179.34	6.64	
but without supplement	MAPE(%)	7.36	2.17	17.81	9.72	2.53	24.26	
CV uses one NN	MSE	92.35	115.26	48.25	99.65	121.9	58.55	
	MAPE(%)	23.16	5.69	60.05	27.51	5.86	72.80	
Table 3: Comparing Pri	icing Accur	acy and A	blation	Studies	for S&P C	Options .		

Results on TAIEX Option

		Befor	re Data Clear	ning	After Data cleaning				
Model	Error	Overall	ITM	OTM	Overall	ITM	OTM		
BS	MSE	979.47	1263.32	752.24	994.72	1265.41	767.88		
(Black and Scholes [5])	MAPE(%)	35.52	2.62	82.75	35.09	2.66	81.51		
Variance Gamma	MSE	357.84	416.53	368.51	365.15	418.77	378.33		
(Madan et al. [22])	MAPE(%)	19.52	1.75	44.44	18.96	1.78	42.98		
Kou's Jump	MSE	319.4	378.26	314.12	323.12	367.51	321.88		
(Kou[19])	MAPE(%)	17.57	1.63	38.88	17.13	1.65	37.78		
Multi	MSE	8820.45	12401.15	3946.04	7456.88	13713.16	1349.06		
(Yang et al. [29])	MAPE(%)	65.63	7.69	150.57	37.12	4.1	85.52		
Deep Smoothing	MSE	3710.67	5511.63	1191.23	3490.72	5359.1	885.74		
(Ackerer et al. [1])	MAPE(%)	51.09	9.7	111.15	49	9.81	105.54		
Hybrid gated NN	MSE	251978.14	423181.76	17719.31	21591.17	21644.39	21580.21		
(Cao et al. [7])	MAPE(%)	836.46	29.25	1859.18	687.53	10.76	1559.75		
Conv-LSTM	MSE	5205.84	6044	3025	5203	6659	3171		
(Ge et al. [13])	MAPE(%)	1271.44	477	11641	974.71	397	11600		
CV	MSE	537.51	611.56	540.26	301.31	421.35	225.21		
	MAPE(%)	13.19	1.48	28.95	11.72	1.27	25.72		

Table 4: Comparing Pricing Accuracy for TAIEX Options Before/After Data Cleaning on the Testing Set

Conclusions

Conclusions

- Reduces prediction errors by decomposing option values using control variate techniques
- Incorporate no-arbitrage constraints for time value surface into neural network
- Remove those unnecessary data synthesis from past approaches.
- Propose a data cleaning trick to price the option in the illiquid market more accurately

Thanks!

Do you have any questions?

music87.c@nycu.edu.tw

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

Please keep this slide for attribution