Presenter:

Jheng-Hong Yang

j587yang@uwaterloo.ca

COLING2020 Online 2020 Nov. 10

Designing Templates for Eliciting Commonsense Knowledge From Pretrained Sequence-To-Sequence Models

Sheng-Chieh Lin^{*}, Jheng-Hong Yang^{*}, Rodrigo Nogueira, Ming-Feng Tsai, Chuan-Ju Wang and Jimmy Lin

* Contributed equally

- 1. Introduction
- 2. Proposed Solution
- 3. Evaluation
- 4. Conclusion

Text-To-Text Pretrained Transformer (T5)

- Formulate most NLP tasks in a "text-to-text" format
- From encoder-only to encoder-decoder pretraining

Figure 1: The text-to-text framework proposed by Raffel et al. [1].¹

Figure 2: An encoder-decoder model that performs masked language model training.

Text-To-Text Pretrained Transformer (T5)

Consider the MNLI task

Task: MNLI	Input	Output
Original	(Hypothesis) The St. Louis Cardinals have always won. (Premise) yeah well losing is i mean i'm i'm originally from Saint Louis and Saint Louis Cardinals when they were there were uh a mostly a losing team but	2
Т5	mnli hypothesis: The St. Louis Cardinals have always won. premise: yeah well losing is i mean i'm i'm originally from Saint Louis and Saint Louis Cardinals when they were there were uh a mostly a losing team but	contradiction
Table. 1 An e T5. The origi	example of T5's text-to-text template for MNLI task; all inputs and outputs inal inputs do not include the texts in the parentheses, but we put them exp	are texts for licitly in

texts for T5.

^{*} This example is taken from appendix D.3 in [1].

#. Introduction

Commonsense Reasoning as Multiple-Choice Question Answering

WinoGrande [2] setting

Task: WinoGrande		Input	Output
Original	He never comes to my home, but I always go to his house because the _	_ is smaller.	(Option1) home (Option2) house

Table. 2 An example from WinoGrande commonsense reasoning dataset. Models are expected to fill in the right option texts in "_"; in this example, the correct answer is (Option1) home.

Research Questions

- Is there commonsense embedded in the pretrained models?
- What are the "design factors" for text-to-text framework?

- 1. Introduction
- 2. Proposed Solution
 - a. Text-to-text template
 - b. Exploiting pretrained tokens
- 3. Evaluation
- 4. Conclusion

Text-To-Text Template (Without Context)

Task: WinoGrande	Input	Output
Original	He never comes to my home, but I always go to his house because the _ is smaller.	(Option1) home (Option2) house
Option 1	hypothesis: <i>home</i> is smaller. premise: He never comes to my home, but I always go to his house because the	entailment
Option 2	hypothesis: <i>house</i> is smaller. premise: He never comes to my home, but I always go to his house because the	contradiction

Table 3: Given an example in WinoGrande, we decompose it as two instances.

- If the output pair is (entailment, contradiction) for (home, house), we know that "home" is the correct answer.
- But ...

Text-To-Text Template (Without Context)

Output combinations	Option1	Option2
Option 1	entailment/entailment	entailment/ contradiction
Option 2	contradiction/entailment	contradiction/ contradiction

Table 4: When using text pairs, we cannot decide which option is the correct answer on the diagonal cases.

We need a solution to deal with the cases that we cannot assign correct answers purely by texts.

Exploiting Pretrained Tokens With Logit Trick [3]

Text-To-Text Template (With Context)

Task: ARC-Easy	Input	Context	Output
Original	A green plant absorbs light. A frog eats flies. These are examples of how organisms	organism that obtains energy by eating both plants and animals.	(A) obtain energy(B) escape predators(C) produce offspring(D) excrete waste
(A)	hypothesis: A green plant absorbs light. A frog eats flies. These are examples of how organisms obtain energy premise: organism that obtains energy by eating both plants and animals.		true
(B)	hypothesis: A green plant absorbs light. A frog eats flies. These are examples of how organisms escape predators premise: organism that obtains energy by eating both plants and animals.		false
(C)	hypothesis: A green plant absorbs light. A frog eats flies. These are examples of how organisms produce offspring premise: organism that obtains energy by eating both plants and animals.		false
(D)	hypothesis: A green plant absorb examples of how organisms excrete was energy l	s light. A frog eats flies. These are ste premise: organism that obtains by eating both plants and animals.	false

Table 5: For other commonsense reasoning tasks that provide context for reasoning or more than two options, we can easily extend our proposed template approach. Here we use an example in ARC-Easy [4] for demonstration.

- 1. Introduction
- 2. Proposed Solution

3. Evaluation

4. Conclusion

WinoGrande [2]

Metric: accuracy

Condition		Training size						
Condition	Target token	Logit	Zero-Shot	XS	S	Μ	L	XL
$\#1\ \#2$	entailment/contradiction	\checkmark	$\begin{array}{c} 0.506 \\ 0.608 \end{array}$	$0.657 \\ 0.718$	$0.693 \\ 0.740$	$0.757 \\ 0.788$	$0.809 \\ 0.837$	$0.840 \\ 0.854$
$\#3\ \#4$	true/false	\checkmark	$\begin{array}{c} 0.477\\ 0.566\end{array}$	$0.676 \\ 0.723$	$0.697 \\ 0.752$	$\begin{array}{c} 0.760 \\ 0.800 \end{array}$	$0.823 \\ 0.843$	$\begin{array}{c} 0.852 \\ 0.865 \end{array}$
Our leaderboard submission (test set)			-	0.683	0.705	0.776	0.824	0.846

Table 6: Results on WinoGrande, measured by the accuracy of models trained on different dataset sizes. Condition #2 is our leaderboard submission.

OpenbookQA [5] and **ARC-Easy** [4]

Metric: accuracy

Condition	Dataset			
	OpenBookQA	ARC-Easy		
w/o contexts w/ contexts	$\begin{array}{c} 0.768 \\ 0.834 \end{array}$	$\begin{array}{c} 0.808\\ 0.872 \end{array}$		
Our submission (test set)	0.832	0.891		

Table 7: Results on OpenbookQA and ARC-Easy, measured by accuracy. We conduct the experiments with true/false target tokens and logit trick, corresponding to condition #4 in Table 6.

- 1. Introduction
- 2. Proposed Solution
- 3. Evaluation
- 4. Conclusion

Take Home

- Using the template we proposed with the logit trick, pretrained T5 performs better than random without fine-tuning.
 - Does it mean that T5 captures some commonsense during pretraining?
- We explored a direction for designing templates for the text-to-text framework.
 - Is there a general rule for the template design?

[1] Raffel, Colin, et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." *Journal of Machine Learning Research* 21.140 (2020): 1-67.

[2] Sakaguchi, Keisuke, et al. "Winogrande: An adversarial winograd schema challenge at scale." *arXiv* preprint arXiv:1907.10641 (2019).

[3] Nogueira, Rodrigo, Zhiying Jiang, and Jimmy Lin. "Document ranking with a pretrained sequence-to-sequence model." *arXiv preprint arXiv:2003.06713* (2020).

[4] Clark, Peter, et al. "Think you have solved question answering? try arc, the ai2 reasoning challenge." *arXiv preprint arXiv:1803.05457* (2018).

[5] Mihaylov, Todor, et al. "Can a suit of armor conduct electricity? a new dataset for open book question answering." *arXiv preprint arXiv:1809.02789* (2018).

Thank You!

Have questions?

E-mail:

Sheng-Chieh Lin / s269lin@uwaterloo.ca

Jheng-Hong Yang / j587yang@uwaterloo.ca