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Forward Intensity Model (FIM) [1]

[1] Duan, J. C., Sun, J., & Wang, T. (2012). Multiperiod corporate default prediction—A forward intensity
approach. Journal of Econometrics, 170(1), 191-2009.
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Main Contributions

1. Proposition of a domain-knowledge-tailored neural network: The paper
introduces a novel deep neural network (DNN) model that incorporates economic
domain knowledge, specifically designed for multi-period default prediction.

e Flexible functional forms with DNNs : Enhance the performance

¢ Follow FIM structure to model default intensities: Provide consistent term
structures of default probabilities

e Use economic domain knowledge to regulate the networks: Mitigate overfitting

2. Validation through extensive experiments: The paper verifies the efficacy of
the proposed model through tests conducted on a large US corporate default
dataset spanning from 1994 to 2021.

3. Applicability and insights for machine learning research in finance: The
proposed method can be applied to most neural networks, and it provides
valuable insights for ongoing machine learning research, especially in financial
applications.

Introduction — Main Contributions Methodology Experiments Conclusions
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Framework: A Forward-Intensity Approach

Forward intensities of the two independent doubly stochastic Poisson processes for the time
interval between m to m + At

- Default: f,,(X; )

- Other exit: g,,,(X; )

- Xi,t denotes the set of covariates of the i-th company at prediction time ¢
Forward probability for one period, length=A¢, m = 0,1,2,3,...,...

_ Survival: p(X; s m) = e~ UnXidTanXi )AL

1,1°

_ Default: py(X; ;m) =1 — XAt

- Other exit: p,(X; ;m) = 1 — p(X; ;m) — p(X; s;m) = e ~fo(X:) (1 — e~ X I)Az)

Cumulative default probability (for applications not estimation)

n—1 | ]
PI'Ob[ i n, Af] — 2 Pd(X, 1 m)Hps( I > M
m=0 Jj=0

Introduction Methodology — A Forward-Intensity Approach Experiments Conclusions
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Forward-Intensity Model (FIM)

e Duan et al. (2012) applied a linear composite to obtain the forward intensities.
FaMX;) = exp (Bo(m) + Srm)x;y + . .. + Bum)x 1)
= exp (f(m) - X, ,)
q,f,lIM(Xi,t) = exp (,B_O(m) + ,B_l(m)xi,t’l + ...+ ,B_k(m)xi,t’k)
= exp (S(m) - X;,)

- B(m), B(m) : Coefficient vectors of the forward period m

Introduction Methodology — Forward-Intensity Model (FIM) Experiments Conclusions
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View FIM as a Special Case of Deep Neural
Networks

Default Other exit

/, EIM(Xi,t) = €Xp (:B(m) ' Xi,t) QEIM(Xi,t) = €Xp (:B_(m) ' Xi,t)

(f%LP(Xi,t)’ in\fz/[LP(Xi,z)> | — @MLP(X- m=0,1,---,n— 1)

m=0,1,....n— LI

- MLP stands for a simple architecture of neural networks:
multi-layer perceptron (MLP).

- The MLP model generates the two types of forward
intensities for all prediction horizons at once [2].

_ OMLP s the parameters of the MLP, and n is a parameter
deciding how many prediction horizons for each forward
Intensity that the MLP can generate.

[2] Divernois, M. A. (2020). A Deep Learning Approach to Estimate Forward Default Intensities. Swiss Finance
Institute Research Paper, (20-79).

Introduction Methodology — FIM as a Special Case of DNN Experiments Conclusions
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Capture Time Dynamics of Covariates

(X, g (X))

1,0

= OMP(X, o = 0,1,,m = 1)

m=0,1,....n—

(FRNNCX, ), gRNN(X, ) - ORNNG X im=0,1,..n—1)

m=0,1 ..... n—1 L,0°

- Recurrent Neural Network, often abbreviated as RNN, is a type of artificial
neural network designed to recognize patterns in sequences of data.
- Long short-term memory (LSTM)
- Gated recurrent unit (GRU) [fewer parameters than LSTM]

- For MLP, it only takes the covariates of a given company at the current
time .

- However, for RNN, it takes the covariates of each given company in the
past /1 months of the current time t.

Introduction Methodology — Capture Time Dynamics Experiments Conclusions



EFMA’23 8 CFDA&CLIP Labs

Our Domain Knowledge Tailored (DKT) Approach

e Complex machine learning models: Machine learning models with
complex functional forms often achieve superior performance.

e Risk of overfitting: Despite their improved performance, these
complex models are prone to overfitting.

e Incorporation of domain knowledge: We incorporate economic
domain knowledge to simplify the model, eftectively reducing the
overfitting issue.

e Tailoring fully connected layers: The paper leverages economic
insights specifically to revise the fully connected layers, which are a
fundamental component of deep learning models.

Introduction Methodology — Our DKT Approach Experiments Conclusions
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Fully Connected Layer
— A Fundamental Component of DNNs

Inputs Outputs

An example of a fully connected layer with 3 14
iInput variables and 3 output nodes "

2

n3

- Fully connected layer interpretation: Beyond being viewed as a matrix
multiplication operation, a fully connected layer can also be seen as a
multiple grouping mechanism.

- Example of node calculation: Each output node is calculated by a
unigque linear composite of each input variable.

- For instance, the blue node is calculated as wyn; + won, + wsns,
where wy, w,, W3 are model parameters.

- Distinct groupings: Different linear composites can be interpreted as
distinct methods for grouping the input variables, as illustrated in the
figure (see different colors of the edges).

Introduction Methodology — Fully Connected Layer Experiments Conclusions
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Fully Connected Layer
— A Fundamental Component of DNNs

Inputs Outputs

An example of a fully connected layer with 3 14
iInput variables and 3 output nodes "

2
n3

- Grouping methods determination: The grouping methods within a fully
connected layer are determined by the trained weights.

- Potential redundancy and negative Impact: Some of these trained
weights may be redundant or have a negative impact on the model's
performance.

- Selective weight removal: |t can be beneficial to selectively remove
weights in the fully connected layer.

- Replacement with economically relevant grouping: The removed
weights can be replaced with grouping methods that have more
relevance to economics.

Introduction Methodology — Fully Connected Layer Experiments Conclusions
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The DKT Framework

o Recallthat X;, = (X;,1,X; 2, ..., X; ) is the set of the state variables (input) that
affect the forward intensities for the i-th firm at the current time .

e These variables may include two types of variables: macroeconomic factors and firm-
specific attributes.

e The CRI database includes 16 variables for each firm-month observation, consisting
of 4 common variables and 12 firm-specific variables.

1. Common Variables: 2. Firm-Specific Variables:
L . . * DTD: The distance to default (DTD) of individual firms is used to measure volatility-
* Interest Rate: This is measured using the 3-month short-term US Treasury bill rate.
) . ) adjusted leverage, following the methodology by Metron. For financial firms, DTD
* Stock Index Return: This refers to the trailing one-year return on the S&P500 index. o .
calculation is based on the setting in FIM.

* Financial Aggregate DTD: This is the median distance to default (DTD) of financial « NIJTA: This ratio of net Income to total assets is used as a measure of a company's

firms in the US. profitability.
* Non-Financial Aggregate DTD: This represents the median DTD of non-financial firms * CASH/TA: The logarithm of the ratio of the sum of cash and short-term investments to
in the US. the total assets is used as a measure of a financial firm's liquidity.
k - * CA/CL: The logarithm of the ratio of current assets to current liabilities serves as a
measure of a non-financial firm's liquidity.
Mal N |deas We ex p | IC |t|y g rou p th e * Size: This is measured by the logarithm of the ratio of a firm’s market capitalization to
0 b | d h k . the median market capitalization of the firms in the US over the past year.
Var I a eS an p ru n e t e n etwor S ( l . e ') * M/B: The ratio of a firm's market-to-book asset ratio divided by the median market-to-
remove some edges of the fully connectea book ratio of the firms n the US.
. . * SIGMA: This is the 1-year idiosyncratic volatility, calculated following the method by
|aye I’S) tO S | m p | |fy th e n etWO I’kS ( |eSS Shumway. It's computed by regressing the daily return of a firm's market capitalization
inst the daily return of the S&P500 index, and defined as the standard deviation of
arameters). a0ains
- p . the residuals from this regression.

Introduction Methodology — The DKT Framework Experiments Conclusions
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Grouping the Covariates

Inputs

Covariates  CUtPUts - Categorization of default and other-exit
events
CACL @ @ Liquidity - Examples of covariates:
@ sovency - The covariate “CA/CL” (logarithm of the ratio
NITA @ ® Foofitavity rivnm o1 1
romabliity of current assets to current liabilities) is
/. others classified under “Liquidity.”
e - - The covariate “NI/TA” (ratio of net income to
RN\ Efciency | assets) falls under the “Profitability”
: @ Growth-Resource [5] total assets) falls under the “Profitability
@ Valuation category.
SIGMA @ ® Size - The specifics of these grouping methods

are further described in Appendix B.

[3] Zhang, L., Chen, S., & Zhang, X. (2005). Financial distress early warning based on MDA and ANN technique.
Systems Engineering, 11, 50-58.

[4] Xie, C., Luo, C., & Yu, X. (2011). Financial distress prediction based on SVM and MDA methods: the case of
Chinese listed companies. Quality & Quantity, 45, 671-686.

[5] Rodrigues, B. D., & Stevenson, M. J. (2013). Takeover prediction using forecast combinations. International

Journal of Forecasting, 29(4), 628-641.

Introduction Methodology — Covariate Grouping Experiments Conclusions
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Dataset

e Experiments were conducted using the Credit Research
Initiative (CRI) database from the Asian Institute of Digital

Year Active Firms Default/bankruptcies (%) Other exit (%)

Finance (AIDF) of the National University of Singapore. 1994 6915 17 0.25 203 3.2
1995 7395 16 0.22 362 4.90
. . . 1996 7947 17 0.21 401 5.05
e [nclude data from 17,560 public firms in the US and 1997 8305 48 0.58 568  6.84
contains a total of 1,833,106 firm-month observations 1y 7961 % L7 91 1ls7
from 1994 to 2021. 2000 6930 174 251 757 1092
2002 6229 118 1.89 533 8.56
 The annual default rate varies from 0.21% to 2.51%, 2% oy T oo T o
I I o 2005 5649 35 0.62 384 6.80
while (t)he rate of other exits ranges from 3.22% to 200 fios 3 06 ool
2007 5611 23 0.41 463 8.25
11.97%. 2008 5275 58 1.10 382 7.24
) 2009 4983 105 2.11 322 6.46
e \/ariables: 2010 4855 29 0.60 313 645
2011 4704 32 0.68 304 6.46
. . 2012 4591 39 0.85 262 5.71
e The CRI database includes 16 variables for each 2013 4621 8 0.1 29 517

. . . 1 . 1 .
firm-month observation, comprising 4 common 2015 4858 40 0.82 275  5.66
variables and 12 firm-specific variables. 2017 470 2 089 31 660
2018 4737 20 0.42 262 5.53
e These variables were chosen for their predictive a0 it o 14 s dre
power in corporate defaults in the US [6]. 2021 o7 70 22 41

[6] Credit Research Initiative. (2020). NUS Credit Research Initiative Technical Report. https://d.rmicri.org/static/pdf/
Technical%20report 2020.pdf.

Introduction Methodology Experiments — Dataset Conclusions
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Experimental Setup

Cross-sectional experiments

- 1.8 million monthly samples were mixed and divided into training and testing sets  The training and testing

at a 9:1 ratio. datasets have similar
- The training set was further divided into a 9:1 ratio for sub-training and validation ~ distributions.
subsets.
. - . , , Objective: Test the capability of
v The optimal number of training epochs was determined using this setup. the DNN models

- Notably, data samples from different periods were combined, a common practice
in the machine learning literature.

Overtime experiments

- This setting uses an expanding window approach over time, useful for modeling

. ; The training and testing
time-dependent scenarios.

datasets may have dissimilar

- Initially, a 10-year training sample (from January 1994 to December 2003) is distributions.

used.
Objective: Evaluate the
model's ability to adapt to new
- The model is retrained each December using the expanded dataset until the end  incoming data, mirroring real-

of the dataset. world applications.

- This results in out-of-sample predictions spanning 18 years (from 2004 to 2021).

- Every month for the next year, predictions for 1 month to 5 years are made.

Introduction Methodology Experiments — Setup Conclusions
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Experimental Setup

We re-estimate the model at each year-end starting
from the first month of 2004 and use only the data
available at the time for estimation.

Data arrival time Prediction time
Train
1994/1/1 - 2003/12/31 2004/1/1 - 2004/12/31
1994/1/1 - 2004/12/31 2005/1/1 - 2005/12/31
1994/1/1 - 2019/12/31 2020/1/1 - 2020/12/30 (Only 23 horizons can be predicted)
1994/1/1 - 2020/12/31 2021/1/1 - 2021/11/30 (Only 11 horizons can be predicted)
Validation

Cross-sectional: 9:1

Introduction Methodology Experiments — Setup Conclusions
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Evaluation Metrics

Proportion of Bads

Accuracy Ratio .

o Current model
(AR, %) Perfect model drrent mode

Accuracy Ratio
=B/ (A +B) [7]

Random model

Proportion of borrowers

SSpkT = Z (3 = fipkr)” = Z e}
i=1 i=1

Value R-square
(Compared with FIM)

5SS = 2 3 = fir)” = Z e}
i=1 i=1

_ SSpkr
SSFIM

R?=1

[7] https://www.listendata.com/2019/09/gini-cumulative-accuracy-profile-auc.html

Introduction Methodology Experiments — Evaluation Conclusions
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Evaluation Metrics

m = 1 (one month prediction)

- Every month end, we calculate the
predicted number of defaults amongst o
the active firms for a given prediction
horizon.

- We then compare this with the
observed number of defaults during the *=
specified prediction period.

@ O
SSpkT = Z i = fipk)” = Z e}
Value R-square i=1 i=1
(Compared with FIM) o e ) >
SSpv = Z i =firm)” = 2 €
i=1 =1
, SSpkT
R =1- The higher the better.
SSFIM

Introduction Methodology Experiments — Evaluation Conclusions
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Results — Cross-sectional Experiments

Horizons (months) 1 3 6 9 12 24 36 48 60
Panel A Accuracy ratio (AR) (%)

FIM 95.443 93.337 91.178 86.746 86.192 76.925 69.649 64.687 60.070
MLP 96.144 94.317 92.538 89.174 88.693 &81.771 75.783 70.794 66.418
GRU 97.346 95.025 93.787 91.591 91.302 86.342 81.375 76.863 73.079
DKT_GRU 97.330 94912 93.364 90.645 90.311 84.844 79.678 74.807 70.666
Improvement (%) 1.994 1.809 2.861 5.585 5.928 12.241 16.837 18.822 21.655
Panel B R-square (compared with FIM)

MLP 0.037 0.059 0.096 0.176 0.193 0.280 0.354 0.320 0.273
GRU 0.025 0.205 0.231 0.360 0402 0.578 0.579 0.479 0.431
DKT_GRU 0.040 0.177 0.223 0.332 0379 0.553 0.583 0.496 0.446

- All neural models notably outperformed FIM across all prediction horizons.

- Significant improvement highlights the potential of neural networks in cross-

sectional default prediction.

- GRU-based models excelled, underscoring the importance of incorporating

economic dynamics.

- GRU showed superior performance, thanks to its complex structure adeptly

encapsulating the relationship between firms' variables and default events
when training and testing datasets have similar label distributions.

Introduction Methodology Experiments — Results Conclusions
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Results — Over-time Experiments

Horizons (months) 1 3 6 9 12 24 36 48 60
Panel A Accuracy ratio (AR) (%)

FIM 93.538 92.191 90.040 86.383 85.619 76.410 68.086 60.356 53.915
MLP 93.445 92.195 89.856 85.830 85.000 74.169 65.814 58.851 52.765
GRU 94.268 93.143 91.515 88.667 88.018 78.472 70.856 64.483 59.294
DKT_GRU 94.767 93.559 92.000 89.301 88.693 80.379 73.681 67.330 61.914
Improvement (%) 1.314 1483 2.177 3.378 3.591 5.193 8.218 11.556 14.837
Panel B R-square (compared with FIM)

MLP 0.110 0.123 -0.001 -0.046 -0.036 —-0.101 -0.144 -0.092 0.053
GRU —0.470 —-0.486 -—0.770 —-0.594 —-0.557 —-0.475 -0.329 -0.243 -0.081
DKT GRU 0.156 0.315 0.279 0.160 0.155 0.098 0.370 0.554 0.757

- MLP often performed worse than FIM in the overtime experiment, suggesting

adding functional flexibility alone might not suffice.

- GRU outperformed MLP and FIM in terms of AR, but not in R-square,

indicating the need of model regularization.

- Our proposed DKT (GRU) model outperformed other models in risk ranking

and aggregate default distribution prediction for new incoming data,
especially for long-term prediction horizons.

Introduction Methodology Experiments — Results Conclusions
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Results — Over-time Experiments

Horizons (months) 1 3 6 9 12 24 36 48 60
Panel A Accuracy ratio (AR) (%)

FIM 93.538 92.191 90.040 86.383 85.619 76.410 68.086 60.356 53.915
MLP 93.445 92.195 89.856 85.830 85.000 74.169 65.814 58.851 52.765
GRU 94.268 93.143 91.515 88.667 88.018 78.472 70.856 64.483 59.294
DKT_GRU 94.767 93.559 92.000 89.301 88.693 80.379 73.681 67.330 61.914
Improvement (%) 1.314 1483 2.177 3.378 3.591 5.193 8.218 11.556 14.837
Panel B R-square (compared with FIM)

MLP 0.110 0.123 -0.001 -0.046 -0.036 —-0.101 -0.144 -0.092 0.053
GRU —0.470 —-0.486 -—0.770 —-0.594 —-0.557 —-0.475 -0.329 -0.243 -0.081
DKT GRU 0.156 0.315 0.279 0.160 0.155 0.098 0.370 0.554 0.757

- The performance difference between cross-sectional and overtime experiments
underscores the impact of training and testing dataset distribution variation on
standard neural model performance.

- The unmodified neural-based models may not be suitable for real-world
applications due to these variations.

* The long-term (e.g., 60-month) default prediction showed significant
improvements, demonstrating the effectiveness of the DKT in preventing overfitting
and improving performance.

Introduction Methodology Experiments — Results Conclusions
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Results — Over-time Experiments
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Results — Over-time Experiments

m = 1 (one month prediction) m = 24 (two-year prediction)
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- The models' predicted default rates closely match observed rates for short
prediction horizons.

- As prediction horizons increase, a discrepancy arises between predicted and
observed rates, suggesting a decline in model performance.

- Despite this discrepancy, the predictions of our DKT (GRU) are more stable over
time, especially during 2004-2005 and 2010-2012 periods, than FIM's predictions.

- These observations suggest DKT (GRU) effectively regulates the model to yield
more stable predictions.

Introduction Methodology Experiments — Results Conclusions
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Conclusions

Deep Learning
Methods

Statistical Methods

Complex functional form

- Nonlinearity

- Capture time dynamics

Design deep neural networks based on FIM

- (Generate consistent term structures of default probabilities
- Suitable for real-world scenarios

Domain knowledge tailored approach

- Prevent overfitting

- Good for real-world usage scenarios (overtime experiments)

Introduction Methodology Experiments — Case Study Conclusions



