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Forward Intensity Model (FIM) [1]


[1] Duan, J. C., Sun, J., & Wang, T. (2012). Multiperiod corporate default prediction—A forward intensity 
approach. Journal of Econometrics, 170(1), 191-209.


Default Analysis
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Introduction — Main Contributions               Methodology                Experiments                Conclusions 

Main Contributions

1. Proposition of a domain-knowledge-tailored neural network: The paper 
introduces a novel deep neural network (DNN) model that incorporates economic 
domain knowledge, specifically designed for multi-period default prediction.


• Flexible functional forms with DNNs : Enhance the performance


• Follow FIM structure to model default intensities: Provide consistent term 
structures of default probabilities


• Use economic domain knowledge to regulate the networks: Mitigate overfitting


2. Validation through extensive experiments: The paper verifies the efficacy of 
the proposed model through tests conducted on a large US corporate default 
dataset spanning from 1994 to 2021.


3. Applicability and insights for machine learning research in finance: The 
proposed method can be applied to most neural networks, and it provides 
valuable insights for ongoing machine learning research, especially in financial 
applications.
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Framework: A Forward-Intensity Approach
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• Forward intensities of the two independent doubly stochastic Poisson processes for the time 
interval between  to 


- Default: 


- Other exit: 


-  denotes the set of covariates of the -th company at prediction time 


• Forward probability for one period, length= , ,…


- Survival: 


- Default: 


- Other exit: 


• Cumulative default probability (for applications not estimation)


m m + Δt
fm(Xi,t)

qm(Xi,t)

Xi,t i t

Δt m = 0,1,2,3,…
ps(Xi,t; m) = e−( fm(Xi,t)+qm(Xi,t))Δt

pd(Xi,t; m) = 1 − e−fm(Xi,t)Δt

po(Xi,t; m) = 1 − ps(Xi,t; m) − pd(Xi,t; m) = e−fm(Xi,t) (1 − e−qm(Xi,t)Δt)

Prob[Xi,t, n; Δt] =
n−1

∑
m=0

pd(Xi,t; m)
m−1

∏
j=0

ps(Xi,t; m)
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Forward-Intensity Model (FIM)

• Duan et al. (2012) applied a linear composite to obtain the forward intensities.








-  Coefficient vectors of the forward period  

f FIM
m (Xi,t) = exp (β0(m) + β1(m)xi,t,1 + . . . + βk(m)xi,t,k)

= exp (β(m) ⋅ Xi,t)
qFIM

m (Xi,t) = exp (β̄0(m) + β̄1(m)xi,t,1 + . . . + β̄k(m)xi,t,k)
= exp (β̄(m) ⋅ Xi,t)

β(m), β̄(m) : m
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View FIM as a Special Case of Deep Neural 
Networks
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f FIM
m (Xi,t) = exp (β(m) ⋅ Xi,t) qFIM

m (Xi,t) = exp (β̄(m) ⋅ Xi,t)
Default Other exit

(f MLP
m (Xi,t), qMLP

m (Xi,t))m=0,1,...,n−1
→ ΘMLP(Xi,t; m = 0,1,⋯, n − 1)

- MLP stands for a simple architecture of neural networks: 
multi-layer perceptron (MLP).


- The MLP model generates the two types of forward 
intensities for all prediction horizons at once [2].


-  is the parameters of the MLP, and  is a parameter 
deciding how many prediction horizons for each forward 
intensity that the MLP can generate.

ΘMLP n

[2] Divernois, M. A. (2020). A Deep Learning Approach to Estimate Forward Default Intensities. Swiss Finance 
Institute Research Paper, (20-79).

Introduction                Methodology —  FIM as a Special Case of DNN             Experiments                Conclusions 
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Capture Time Dynamics of Covariates
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(f MLP
m (Xi,t), qMLP

m (Xi,t))m=0,1,...,n−1
→ ΘMLP(Xi,t; m = 0,1,⋯, n − 1)

(f RNN
m (Xi,t), qRNN

m (Xi,t))m=0,1,...,n−1
→ ΘRNN(Xi,t−h, . . . , Xi,t; m = 0,1,...,n − 1)

- Recurrent Neural Network, often abbreviated as RNN, is a type of artificial 
neural network designed to recognize patterns in sequences of data.

- Long short-term memory (LSTM)

- Gated recurrent unit (GRU) [fewer parameters than LSTM]


- For MLP, it only takes the covariates of a given company at the current 
time . 


- However, for RNN, it takes the covariates of each given company in the 
past  months of the current time . 

t

h t

Introduction                Methodology —  Capture Time Dynamics             Experiments                Conclusions 
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Our Domain Knowledge Tailored (DKT) Approach

• Complex machine learning models: Machine learning models with 
complex functional forms often achieve superior performance.


• Risk of overfitting: Despite their improved performance, these 
complex models are prone to overfitting.


• Incorporation of domain knowledge: We incorporate economic 
domain knowledge to simplify the model, effectively reducing the 
overfitting issue.


• Tailoring fully connected layers: The paper leverages economic 
insights specifically to revise the fully connected layers, which are a 
fundamental component of deep learning models.

8
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Fully Connected Layer
— A Fundamental Component of DNNs
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Introduction                Methodology — Fully Connected Layer            Experiments                Conclusions 

An example of a fully connected layer with 3 
input variables and 3 output nodes

- Fully connected layer interpretation: Beyond being viewed as a matrix 
multiplication operation, a fully connected layer can also be seen as a 
multiple grouping mechanism.


- Example of node calculation: Each output node is calculated by a 
unique linear composite of each input variable. 

- For instance, the blue node is calculated as , 

where  are model parameters.

- Distinct groupings: Different linear composites can be interpreted as 

distinct methods for grouping the input variables, as illustrated in the 
figure (see different colors of the edges).

w1n1 + w2n2 + w3n3
w1, w2, w3
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Fully Connected Layer
— A Fundamental Component of DNNs
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Introduction                Methodology — Fully Connected Layer             Experiments                Conclusions 

An example of a fully connected layer with 3 
input variables and 3 output nodes

- Grouping methods determination: The grouping methods within a fully 
connected layer are determined by the trained weights.


- Potential redundancy and negative Impact: Some of these trained 
weights may be redundant or have a negative impact on the model's 
performance.


- Selective weight removal: It can be beneficial to selectively remove 
weights in the fully connected layer.


- Replacement with economically relevant grouping: The removed 
weights can be replaced with grouping methods that have more 
relevance to economics.
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The DKT Framework 

• Recall that  is the set of the state variables (input) that 
affect the forward intensities for the -th firm at the current time .


• These variables may include two types of variables: macroeconomic factors and firm-
specific attributes.


• The CRI database includes 16 variables for each firm-month observation, consisting 
of 4 common variables and 12 firm-specific variables.

Xi,t = (xi,t,1, xi,t,2, …, xi,t,k)
i t
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Main ideas: We explicitly group the 
variables and prune the networks (i.e., 

remove some edges of the fully connected 
layers) to simplify the networks (less 

parameters).
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Grouping the Covariates
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Introduction                Methodology — Covariate Grouping             Experiments                Conclusions 

- Categorization of default and other-exit 
events

- Examples of covariates:

- The covariate “CA/CL” (logarithm of the ratio 

of current assets to current liabilities) is 
classified under “Liquidity.” 


- The covariate “NI/TA” (ratio of net income to 
total assets) falls under the “Profitability” 
category.


- The specifics of these grouping methods 
are further described in Appendix B.

CA/CL

NI/TA

SIGMA

[3,4]

[5]

[3] Zhang, L., Chen, S., & Zhang, X. (2005). Financial distress early warning based on MDA and ANN technique. 
Systems Engineering, 11, 50-58.

[4] Xie, C., Luo, C., & Yu, X. (2011). Financial distress prediction based on SVM and MDA methods: the case of 
Chinese listed companies. Quality & Quantity, 45, 671-686.

[5] Rodrigues, B. D., & Stevenson, M. J. (2013). Takeover prediction using forecast combinations. International 
Journal of Forecasting, 29(4), 628-641.
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Dataset

Introduction                Methodology              Experiments — Dataset               Conclusions 

• Experiments were conducted using the Credit Research 
Initiative (CRI) database from the Asian Institute of Digital 
Finance (AIDF) of the National University of Singapore.


• Include data from 17,560 public firms in the US and 
contains a total of 1,833,106 firm-month observations 
from 1994 to 2021.


• The annual default rate varies from 0.21% to 2.51%, 
while the rate of other exits ranges from 3.22% to 
11.57%.


• Variables:


• The CRI database includes 16 variables for each 
firm-month observation, comprising 4 common 
variables and 12 firm-specific variables.


• These variables were chosen for their predictive 
power in corporate defaults in the US [6].

13

[6] Credit Research Initiative. (2020). NUS Credit Research Initiative Technical Report. https://d.rmicri.org/static/pdf/
Technical%20report_2020.pdf.

https://d.rmicri.org/static/pdf/Technical%20report_2020.pdf
https://d.rmicri.org/static/pdf/Technical%20report_2020.pdf


EFMA’23                                                                                                                                                       CFDA&CLIP Labs

Experimental Setup

Introduction                Methodology              Experiments — Setup               Conclusions 

• Cross-sectional experiments

- 1.8 million monthly samples were mixed and divided into training and testing sets 
at a 9:1 ratio.


- The training set was further divided into a 9:1 ratio for sub-training and validation 
subsets.


✓ The optimal number of training epochs was determined using this setup.


- Notably, data samples from different periods were combined, a common practice 
in the machine learning literature.


• Overtime experiments

- This setting uses an expanding window approach over time, useful for modeling 
time-dependent scenarios.


- Initially, a 10-year training sample (from January 1994 to December 2003) is 
used.


- Every month for the next year, predictions for 1 month to 5 years are made.


- The model is retrained each December using the expanded dataset until the end 
of the dataset.


- This results in out-of-sample predictions spanning 18 years (from 2004 to 2021).

14

The training and testing 
datasets have similar 
distributions.

The training and testing 
datasets may have dissimilar 
distributions.

Objective: Test the capability of 
the DNN models

Objective: Evaluate the 
model's ability to adapt to new 
incoming data, mirroring real-
world applications.
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Experimental Setup

Introduction                Methodology              Experiments — Setup               Conclusions 
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We re-estimate the model at each year-end starting 
from the first month of 2004 and use only the data 
available at the time for estimation.
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Evaluation Metrics

Introduction                Methodology              Experiments — Evaluation               Conclusions 
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Order

Value

Accuracy Ratio

 (AR, %)

R-square

(Compared with FIM)

SSDKT = ∑
i=1

(yi − fi,DKT)2 = ∑
i=1

e2
i

SSFIM = ∑
i=1

(yi − fi,FIM)2 = ∑
i=1

e2
i

R2 = 1 −
SSDKT

SSFIM

[7] https://www.listendata.com/2019/09/gini-cumulative-accuracy-profile-auc.html

[7]

https://www.listendata.com/2019/09/gini-cumulative-accuracy-profile-auc.html
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Evaluation Metrics

Introduction                Methodology              Experiments — Evaluation               Conclusions 
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Value R-square

(Compared with FIM)

SSDKT = ∑
i=1

(yi − fi,DKT)2 = ∑
i=1

e2
i

SSFIM = ∑
i=1

(yi − fi,FIM)2 = ∑
i=1

e2
i

R2 = 1 −
SSDKT

SSFIM

- Every month end, we calculate the 
predicted number of defaults amongst 
the active firms for a given prediction 
horizon. 


- We then compare this with the 
observed number of defaults during the 
specified prediction period. 

 (one month prediction)m = 1

The higher the better.
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Results — Cross-sectional Experiments
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- All neural models notably outperformed FIM across all prediction horizons.

- Significant improvement highlights the potential of neural networks in cross-

sectional default prediction.

- GRU-based models excelled, underscoring the importance of incorporating 

economic dynamics.

- GRU showed superior performance, thanks to its complex structure adeptly 

encapsulating the relationship between firms' variables and default events 
when training and testing datasets have similar label distributions.
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Results — Over-time Experiments

Introduction                Methodology              Experiments — Results               Conclusions 
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- MLP often performed worse than FIM in the overtime experiment, suggesting 
adding functional flexibility alone might not suffice.


- GRU outperformed MLP and FIM in terms of AR, but not in R-square, 
indicating the need of model regularization.


- Our proposed DKT (GRU) model outperformed other models in risk ranking 
and aggregate default distribution prediction for new incoming data, 
especially for long-term prediction horizons.
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Results — Over-time Experiments

Introduction                Methodology              Experiments — Results               Conclusions 
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- The performance difference between cross-sectional and overtime experiments 
underscores the impact of training and testing dataset distribution variation on 
standard neural model performance.


- The unmodified neural-based models may not be suitable for real-world 
applications due to these variations.


★The long-term (e.g., 60-month) default prediction showed significant 
improvements, demonstrating the effectiveness of the DKT in preventing overfitting 
and improving performance.



EFMA’23                                                                                                                                                       CFDA&CLIP Labs

Results — Over-time Experiments
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Introduction                Methodology              Experiments — Results               Conclusions 
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Results — Over-time Experiments
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Introduction                Methodology              Experiments — Results               Conclusions 

- The models' predicted default rates closely match observed rates for short 
prediction horizons.


- As prediction horizons increase, a discrepancy arises between predicted and 
observed rates, suggesting a decline in model performance.


- Despite this discrepancy, the predictions of our DKT (GRU) are more stable over 
time, especially during 2004-2005 and 2010-2012 periods, than FIM's predictions.


- These observations suggest DKT (GRU) effectively regulates the model to yield 
more stable predictions.

 (one month prediction)m = 1  (two-year prediction)m = 24
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Conclusions

Introduction                Methodology              Experiments — Case Study               Conclusions 
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Deep Learning 
MethodsStatistical Methods

Complex functional form 
- Nonlinearity

- Capture time dynamics

Design deep neural networks based on FIM 
- Generate consistent term structures of default probabilities

- Suitable for real-world scenarios

Domain knowledge tailored approach 
- Prevent overfitting

- Good for real-world usage scenarios (overtime experiments)



