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What is Default Prediction?
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l Companies

Would companies default on their obligations? When in the future?

!

Banks should know and manage default risks




Effective Default Prediction Requires Capturing both short-term and long-
term Risk Dynamics
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Predict multiple timestamps at a time: Multiperiod

Cumulative default probabilities




A Term Structure of Cumulative Default Probabilities
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Source: Multiperiod Corporate Default Prediction Through Neural Parametric Family Learning

Term Structure
e Short-term: 1, 3, 6, 12 months
e Long-term: 24, 36, 48, 60 months

—— Monotonically increase
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Previous Approaches Rely Exclusively on Individual Company Data
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Inter-Company Relationships Should Also be Considered

2N
’mmuw Less raw material demand

>

Less assembly Foxconn
Less logistics

demand demand
. 2N DN
"“W Disrupted supply m‘w Less logistics demand
> >
T Il | |
TSMC Apple FedEX DHL

Less logistics demand

Less products
supply

Amazon Best Buy

However, mapping intricate inter-company relationships is a complex and challenging task




Fully-Connected Graphs Simplify Complex Inter-Company Relationships

Technology Logistics

* How each companies is represented?

* Sequential embedding from its own data
* How to decide the weight for each edge?

* Graph Attention Network (GATSs)
* How to represent each sector? \

* Aggregate every companies within it by

MaxPooling
\

g

Retalls Banking




TAGAT - Overall Framework

Emb. Integration and Default Prediction
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Intra-Sector Relation Modeling

« Each company i at time ¢ is represented as: Intra-sector GAT
r t
v. = GRU(x))
 Each company’s influence at time 7 from other
companies within sector 7, is formulated using a GAT
as:
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Inter-Sector Relation Modeling

* For each sector, we apply element-wise

max-pooling on intra-sector relation Intra-sector GAT Inter-sector GAT
embeddings g’ to obtain its representation |
zjrs = MaxPool({g; | Vie M, }) %
| ‘ .

» Each sector’s influence at time 7 from other Q'
companies formulated using a GAT as: @3 "‘

7 = GAT(Z))
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Embedding Integration and Multiperiod Default Prediction

* The three embeddings are concatenated and passed through an
MLP for fusion, creating a holistic company representation
a’ = ReLU ([vg g || 2] W, + bf)
* Finally, the fused embedding passes through an MLP for multi-
period default prediction
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Dataset

 Dates: January 1990 - December 2017

 Data: 1.5 M monthly samples of US public companies

@ Credit * Features: 14 covariates
Research | |
RI Tnitiative  Events: O (alive), 1 (default), 2 (other exit)

National University of Singapore

e Maximum Prediction Horizons: 60 months

« Data Partition:

1.5 Million Monthly Data (Sort by Datetime)

Training (1991-2010) I:;t;;?




Evaluation Metrics

 Accuracy Ratio (AR)

* Measures a model’s ability to discriminate the risk ranking among companies’ default
probabilities

1 Perfect prediction

AR =2 x AUC -1 0 Random guessing
-1 Opposite prediction

 Root Mean Square Normalized Error (RMSNE)

 Measures how accurately a model predicts the number of defaults over a specific
prediction horizon

~/

2 . :
Z (D -D ) D : the estimated default numbers
T =1

D : actual default numbers

RMSNE =
v




Main Result

Table 2: Main results
Horizons (months) 1 3 6 12 24 36 48 60

Panel A: Accuracy ratio (AR) (%)

FIM 95.88 95.01 93.16 89.11 31.38 75.21 74.11 72.46
GRU 95.00 93.91 92.72 38.24 78.95 71.32 66.16 63.76
TAGAT 95.78 95.00 94.30 91.12 84.11 78.31 76.07 73.87

Panel B: Root mean square normalized error (RMSNE)

FIM 0.5408 0.4617 0.3730 0.3898 0.4222 0.4176 0.3497 0.2245
GRU 0.5722 0.4259 0.2856 0.2843 0.4222 0.4827 0.3349 0.1568
TAGAT 0.9071 0.5134 0.3293 0.3190 | 0.3805 0.3625 0.1802 0.1114

* |nterms of AR, TAGAT surpass both baselines across all prediction horizons, except for 1 and
3 months AR

* |nterms of RMSNE, TAGAT exhibits notable enhancements in long-term prediction horizons,
highlighting its strong capability of capturing more complex and long-term signals
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Default Distribution - 12 months

12 months cumulative defaults
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Default Distribution - 48 months

48 months cumulative defaults
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Ablation Studies

Table 3: Ablation studies on the GAT module

Horizons (months) 1 3 6 12 24 36 48 60
Panel A: Accuracy ratio (AR) (%)

TAGAT (full model) 95.78 95.00 94.30 91.12 84.11 78.31 76.07  73.87
TAGAT (w/o GATs) 96.11 95.25 94.30 91.20 84.85 79.54 76.67 73.23

Panel B: Root mean square normalized error (RMSNE)

TAGAT (full model) [0.9071 0.5134 0.3293 0.3190 0.3805 0.3625 0.1802| 0.1114

TAGAT (w/o GATs) 1.1616 0.9160 0.4437 0.3722 0.3962 0.3772 0.2142 0.0698

* The inclusion of GAT components marginally affects performance in terms of AR but
significantly influences RMSNE

* The ability to predict more accurate numbers of defaults is more relevant for financial
institutions to gain a whole picture of its current financial risk




Conclusion

Time-aware Representation

/\;, Effectively capture the sequential characteristics of individual companies

Intra-/Inter-sector Relation Modeling

Effectively capture the company's relations with other companies within the same sector, and the
Impacts arising from broader sector-level dynamics

Pl * &€ Better Long-term Default Prediction
qiplj flqip Our experiments demonstrate that our TAGAT model excels at making accurate predictions for more

challenging long-term horizons




