HOP-Rec:

High-Order Proximitiy for Implicit Recommendation Jheng-Hong Yang,[†] Chih-Ming Chen,[‡] Chuan-Ju Wang,[†] Ming-Feng Tsai[‡]

[†]Academia Sinica, Taiwan

[‡]National Chengchi University, Taiwan

Source Code: Paper ProNet Paper

HOP-Rec: Graph + Latent Factor

Graph-Based Model

Motivation

✓ There are plentiful information inherited in simple user-item bipartite graph.

Rank items by neighborhood proximities (transition probability or other scoring methods)

✓ Estimate users' preference of unknown items from indirect observations

1st

2nd

3rd

✓ Order estimations by neighborhood proximities

1st

✓ Graph-based model and latent factor model should be complementary to each other.

✓ Unify two approaches instead of computing features from independent frameworks

X Unconnected vertices will not be affected remotely (without sharing the same vector space).

Objective Function

graph model factorization model $\widetilde{C}(k) \mathbb{E}_{i \sim P_{u}^{k}} \left[\mathcal{F} \left(\theta_{u}^{\mathsf{T}} \theta_{i'}, \theta_{u}^{\mathsf{T}} \theta_{i} \right) \right] + \lambda_{\Theta} \|\Theta\|_{2}^{2},$ $\mathcal{L}_{HOP} = \sum$ $1 \le k \le K$ u, (i, i') $i' \sim P_N$

 $\mathcal{F}(\theta_{u}^{\mathsf{T}}\theta_{i'}, \theta_{u}^{\mathsf{T}}\theta_{i}) = \mathbb{1}_{\left\{\theta_{u}^{\mathsf{T}}\theta_{i'} - \theta_{u}^{\mathsf{T}}\theta_{i} > \epsilon_{k}\right\}} \log \left[\sigma \left(\theta_{u}^{\mathsf{T}}\theta_{i'} - \theta_{u}^{\mathsf{T}}\theta_{i}\right)\right]$

✓ Factorization model: personalized pairwise rank

Latent Factor Model

- Decompose user-item interaction matrix to get shared latent factors of users and items
- Estimate unknown items through \checkmark shared latent factor
- **X** Focus only on **shallow** observations

2nd

1st

1st

1st

1st

2nd

3rd

2nd

1st

Experiment

Table 2: Performance comparison CiteUlike Amazon-Book MovieLens-1M MovieLens-20M MAP@10 P@10 MAP@10 R@10 MAP@10 P@10 R@10 MAP@10 R@10 P@10 R@10 P@10 MF 17.7% 11.7%14.9% 6.7% 13.1% 14.0%11.3% 0.7%3.7% 1.4%4.1% 13.1% BPR 2.5%3.8% 14.2%6.4% 18.1% 13.2% 12.5%13.3% 14.3% 10.4%1.0%5.3%

 \checkmark Positive sampling: degree sampled random walk

✓ Negative sampling: uniform from all items

I	HOP	5.9% 5.9%	21.2% 21.3%	3.2% * 10.8 %	22.8% * 25.9 %	17.2% * 20.5 %	14.2% * 19.6 %	17.3% * 21.2 %	19.4% * 22.3 %	10.3% * 17.9 %	- 1.5%	- 7.9%	- * 3.6 %
	%Improv.	0.0%	0.5%	13.7%	4.4%	10.8%	5.9%	2.4%	4.2%	4.1%	0.0%	0.0%	2.9%

