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Introduction

Pricing derivatives is equivalent to computing its expected payoff
under a suitable probability measure.

Most derivatives have no analytical formulas.

So they must be priced by numerical methods like the lattice model.
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Oscillations

However, the nonlinearity error may cause the pricing results to
converge slowly and oscillate significantly.1
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1Figlewski and Gao (1999).

4 / 19
An Efficient and Accurate Lattice for Pricing Derivatives under a Jump-Diffusion Process



Introduction Preliminaries Lattice Construction Numerical Results Conclusion

Models

Lognormal diffusion process has been widely used to model the
stock price dynamics but is incapable of capturing empirical stock
price behaviors.2

Many alternative processes like jump-diffusion process have been
proposed to address this problem.

2Black and Scholes (1973), Hosking, Bonti, and Siegel (2000).
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Related Work

Amin (1993)

He approximates the jump-diffusion process by a multinomial lattice.
Huge numbers of branches at each node make the lattice inefficient.

Hilliard and Schwartz (2005)

They match the first local moments of the lognormal jumps.
Their lattice lacks the flexibility to suit derivatives’ specifications.
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Main Results

This talk proposes an efficient lattice model for the jump-diffusion
process.

The time complexity of our lattice is O(n2.5).

Our lattice is adjusted to suit the derivatives’ specification so that
the price oscillation problem can be significantly suppressed.
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Jump-Diffusion Process

Define St as the stock price at time t.

Merton’s jump-diffusion model assumes that the stock price process
can be expressed as

St = S0e
(r−λk̄−0.5σ2)t+σz(t)U(n(t))). (1)

Decomposing Eq. (1) into the diffusion component and the jump
component:

Vt ≡ ln (St/S0) = Xt + Yt ,

The diffusion component

Xt ≡
(
r − λk̄ − 0.5σ2

)
t + σz(t)

is a Brownian motion.
The jump component

Yt ≡
n(t)∑

i=0

ln (1 + ki)

is normal under Poisson compounding.
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CRR Lattice for the Diffusion Part

The size of one time step is
∆t = T/n.
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Hilliard and Schwartz’s Lattice

Diffusion part (Xt)

Match mean and variance of
X∆t .
Obtain Pu and Pd .

Jump part (Yt)

Match the first 2m local
moments of Y∆t .
Obtain qj
(j = 0,±1,±2, . . . ,±m).
The node count of the lattice is
O(n3).
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Hilliard and Schwartz’s and Our Lattice
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Price Oscillation Problem

Price oscillation problem is mainly due to the nonlinearity error.

The solution of the nonlinearity error:

Making price level of the lattice coincide with the location where
the option value function is highly nonlinear, such as the barriers
and strike price.
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Trinomial Structure
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Theorem 1: the branching probabilities for the node X

Puα+ Pmβ + Pdγ = 0,

Pu(α)
2 + Pm(β)

2 + Pd (γ)
2 = Var,

Pu + Pm + Pd = 1.
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Adjusting the Diffusion Part of the Lattice

Select ∆t to make h′−l′

2σ
√
∆t

be an integer.

Lay out the grid from
barrier L upward.

Automatically, barrier H
coincides with one level of
nodes.

Obtain Pu , Pm, Pd by
Theorem 1 (p. 13).
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Dealing with Jump Nodes

Two phases: the
diffusion phase and
the jump phase.

The node count of
our lattice is O(n2.5).

1! ! 1+!

uP

dP

( )d ! ( 1)d +!
(2 1) ( )m d+ ! (2 1) ( 1)m d+ +!
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Time Complexity
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Figure: time complexity.
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Vanilla Options
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Barrier Options
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Figure: Pricing a Single-Barrier Call Option.
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Conclusion

This talk presents a novel, accurate, and efficient lattice model to
price a huge variety of derivatives whose underlying asset follows the
jump-diffusion process.

It is the first attempt to reduce the time complexity of the lattice
model for the jump-diffusion process to O(n2.5).
In contrast, that of previous work is O(n3).
With the adjustable structure to fit derivatives’ specifications, our
lattice model make the pricing results converge smoothly.

According to the numerical results, our lattice model is superior to
the existing methods in terms of accuracy, speed, and generality.
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