

LSTPR: Graph-based Matrix Factorization with Long Short-term Preference Ranking

Chih-Hen Lee¹, Jun-En Ding¹, Chih-Ming Chen², Jing-Kai Lou³, Ming-Feng Tsai², Chuan-Ju Wang¹

2021.06.03

National Chengchi University²

Presented by Chih-Hen Lee

KKStream Limited³

Academia Sinica¹

OUTLINE

Motivation

Motivation

- We want to leverage two important features, temporal information and high-order graph relations, at the same time for recommendation task.
- However, the sequential models and GCN-based recommenders could be time-consuming or suffer from data sparsity issue.
- Therefore, we propose LSTPR, which explicitly distinguishes longterm and short-term user preferences and enriches the sparse interactions via random surfing on the user-item graph.

Analysis

Analysis

- We aim to answer the following questions with quantitative analyses:
 - Do short-term preferences really exist?
 - If so, can short-term preferences help predict user's future behaviors?

- Firstly, we represent items by the column vectors on the user-item matrix.
- Then, we sort each user's behavior logs in the training period with temporal order.

						Emilia Enone
8	0	1	1	0	1	0
8	1	1	1	0	1	1
8	1	0	0	0	1	0
8	0	1	1	1	0	1
8	0	1	0	1	1	0

Ref: <u>https://www.imdb.com/whats-on-tv/?ref =nv tv ontv</u>

• There are three kinds of preferences for every user, which are represented as normalized sum of item vectors:

(2)

3

4

5

5

- Long-term: all interacted items
- Short-term: last n items
- Random: random n items
- From n=1 to n=15, we calculate every user's Kullback-Leibler Divergence (KLD) between Short-term preference and Longterm preference and Random preference and Longterm preference.

- Calculate the average of all user's KLDs \bullet
- Plot Avg. KLDs vs. n

KLDs between short-term and long-term preferences								
	n = 1	n = 2		n = 14	n = 15			
8	2.8	2.5	••••	1.5	1.4			
8	1.2	1.0	•••	0.6	0.4			
8	3.2	2.8	•••	0.0	0.0			
Avg.	2.4	2.1	•••	0.7	0.6			

KLDs between random and long-term preferences n = 1 n = 2 n = 14 n = 15 ...

8	2.7	2.4	•••	1.3	1.2
8	1.1	1.0	•••	0.5	0.3
	3.1	2.6	•••	0.0	0.0
Avg.	2.3	2.0	•••	0.6	0.5

- After confirming that short-term preferences exist, we want to find a best n for predicting user's future behavior.
- Firstly, we sort each user's behavior logs in the training period with temporal order.
- Then, for each user, we split the item set in to a new training set T_u (80%) and a validation set V_u (20%), and represent items by the column vectors on the user-item table.

• There are two kinds of preferences for every user, which are represented as normalized sum of item vectors:

5

4

- Future: all items in V_u
- Short-term: last n items in T_u 1 2
- From n=1 to n=15, we calculate every user's Kullback-Leibler Divergence (KLD) between Short-term preference and Future preference.

- Calculate the average of all user's KLDs
- Plot Avg. KLDs vs. n

KLD	s betwee	en short- n = 2	term and	future p n = 14	n = 15	ces
\mathbf{e}	10.5	11.3	•••	9.9	9.8	
	13.4	10.4	•••	11.7	12.1	
	11.5	11.3	•••	11.1	11.4	
Avg.	11.8	11.0	•••	10.9	11.1	-

- Sort the user-item interactions with temporal order
- Select a suitable n (5, 10, and 15 are used in our experiments)
- Generate two kinds of user nodes

- Build the user-item bipartite graph
- Optimize the embeddings by the modified loss function and k-order sampling probability

$$\begin{aligned} \text{robability} \\ p_v^k(\ell) &= \begin{cases} \frac{a_{v\ell} \deg(\ell)}{\sum_{\ell'} a_{v\ell'} \deg(\ell')}, & \text{if } k = 1 \text{ and } v \in \mathcal{U}^L \cup \mathcal{U}^S \\ \frac{a_{\ell v} \deg(\ell)}{\sum_{\ell'} a_{\ell' v} \deg(\ell')}, & \text{if } k = 1 \text{ and } v \in I \\ p_v^1(\beta) p_{\beta}^{k-1}(\gamma) p_{\gamma}^1(\ell), & \text{if } k > 1, \end{cases} \\ \\ \mathcal{L}^{\text{LSTPR}} &= \sum_{\substack{1 \le k \le K \\ u^S, (i,i')}} \rho(k) \mathbb{E}_{\substack{i \sim P_u^K \\ i' \sim P_N}} \left[\mathbbm{1}_{\{e_u^{L^\top} e_{i'} - e_u^{L^\top} e_i > \xi_k\}} \mathcal{K}(e_u^{S^\top} e_{i'}, e_u^{S^\top} e_i) \right] \\ &+ \sum_{\substack{1 \le k \le K \\ u^L, (j,j')}} \rho(k) \mathbb{E}_{\substack{j \sim P_u^k \\ j' \sim P_N}} \left[\mathbbm{1}_{\{e_u^{L^\top} e_{j'} - e_u^{L^\top} e_j > \xi_k\}} \mathcal{K}(e_u^{L^\top} e_{j'}, e_u^{L^\top} e_j) \right] \\ &+ \lambda_{\Theta} \|\Theta\|^2, \end{aligned}$$

Ref: https://dl.acm.org/doi/10.1145/3240323.324038

- Build the user-item bipartite graph
- Optimize the embeddings by the modified loss function and k-order sampling probability

u₁^L u₂^L u₃^L u₁^S u₂^S u₃^S u₃^S

$$\begin{aligned} \text{robability} \\ p_v^k(\ell) &= \begin{cases} \frac{a_{v\ell} \deg(\ell)}{\sum_{\ell'} a_{v\ell'} \deg(\ell')}, & \text{if } k = 1 \text{ and } v \in \mathcal{U}^L \cup \mathcal{U}^S \\ \frac{a_{\ell v} \deg(\ell)}{\sum_{\ell'} a_{\ell' v} \deg(\ell')}, & \text{if } k = 1 \text{ and } v \in I \\ p_v^1(\beta) p_{\beta}^{k-1}(\gamma) p_{\gamma}^1(\ell), & \text{if } k > 1, \end{cases} \\ \\ \mathcal{L}^{\text{LSTPR}} &= \sum_{\substack{1 \le k \le K \\ u^S, (i,i')}} \rho(k) \mathbb{E}_{\substack{i \sim P_k \\ i' \sim P_N}} \left[\mathbbm{1}_{\{e_u^{S^{\top}} e_{i'} - e_u^{S^{\top}} e_i > \xi_k\}} \mathcal{K}(e_u^{S^{\top}} e_{i'}, e_u^{S^{\top}} e_i) \right] \\ &+ \sum_{\substack{1 \le k \le K \\ u^L, (j,j')}} \rho(k) \mathbb{E}_{\substack{j \sim P_k \\ j' \sim P_N}} \left[\mathbbm{1}_{\{e_u^{L^{\top}} e_{j'} - e_u^{L^{\top}} e_j > \xi_k\}} \mathcal{K}(e_u^{L^{\top}} e_{j'}, e_u^{L^{\top}} e_j) \right] \\ &+ \lambda_{\Theta} \|\Theta\|^2, \end{aligned}$$

Ref: https://dl.acm.org/doi/10.1145/3240323.324038

- Build the user-item bipartite graph
- Optimize the embeddings by the modified loss function and

k-order sampling probability

$$\begin{aligned} \mathcal{L}^{\text{DDADINCY}} \\ p_v^k(\ell) &= \begin{cases} \frac{a_{v\ell} \deg(\ell)}{\sum_{\ell'} a_{v\ell'} \deg(\ell')}, & \text{if } k = 1 \text{ and } v \in \mathcal{U}^L \cup \mathcal{U}^S \\ \frac{a_{\ell v} \deg(\ell)}{\sum_{\ell'} a_{\ell' v} \deg(\ell')}, & \text{if } k = 1 \text{ and } v \in I \\ \frac{p_v(\beta) p_k^{k-1}(\gamma) p_1^1(\ell), & \text{if } k > 1, \end{cases} \\ \\ \mathcal{L}^{\text{LSTPR}} &= \sum_{\substack{1 \le k \le K \\ u^S, (i,i') \\ p = \frac{1 \le k \le K \\ u^S, (i,i')}{p_v(\beta) p_i^{k-1}(\gamma) p_i^1(\ell), & \text{if } k > 1, \end{cases} \\ \\ \begin{pmatrix} \mathcal{L}^{\text{LSTPR}} &= \sum_{\substack{1 \le k \le K \\ u^S, (i,i') \\ p = \frac{1 \le k \le K \\ u^S, (i,i')}{p_v(\beta) p_i^{k-1}(\gamma) p_j^1(\ell), & \text{if } k > 1, \end{cases} \\ \\ \begin{pmatrix} \mathcal{L}^{\text{LSTPR}} &= \sum_{\substack{1 \le k \le K \\ u^S, (i,i') \\ p = \frac{1 \le k \le K \\ u^S, (i,i') \\ u^S, (i,i') \\ p = \frac{1 \le k \le K \\ u^S, (i,i') \\ p = \frac{1 \le k \le K \\ u^S, (i,i') \\ p = \frac{1 \le k \le K \\ u^S, (i,i') \\ p = \frac{1 \le k \le K \\ u^S, (i,i') \\ p = \frac{1 \le k \le K \\ u^S, (i,i') \\ u^S,$$

Ref: https://dl.acm.org/doi/10.1145/3240323.324038

• After training the model, calculate the dot product of shortterm user embedding and item embedding to make top-N recommendation $\hat{s}(u,i) = e_u^{S^{\top}} e_i$.

	Amazon-Book		Amazon-Beauty		JP-VOD	
	Recall@10 / 20	NDCG@10 / 20	Recall@10 / 20	NDCG@10 / 20	Recall@10 / 20	NDCG@10 / 20
BPR [12]	0.0181 / 0.0302	0.0155 / 0.0198	0.0454 / 0.0753	0.0333 / 0.0449	0.0910 / 0.1423	0.0936 / 0.1110
WARP [20]	0.0330 / 0.0565	0.0279 / 0.0366	0.0457 / 0.0710	0.0342 / 0.0439	0.0973 / 0.1536	0.0968 / 0.1167
HOP-Rec [23]	0.0381 / 0.0651	0.0318 / 0.0418	0.0572 / 0.0948	0.0419 / 0.0562	0.1146 / 0.1808	0.1119 / 0.1359
Skew-OPT [16]	0.0422 / 0.0709	0.0350 / 0.0457	0.0530 / 0.0826	0.0408 / 0.0523	0.1124 / 0.1748	0.1110 / 0.1333
LightGCN [3]	†0.0432 / †0.0721	†0.0355 / †0.0462	0.0584 / 0.0893	0.0412 / 0.0528	†0.1172 / †0.1865	0.1138 / †0.1390
Caser [15]	0.0223 / 0.0393	0.0178 / 0.0241	0.0552 / 0.0927	0.0432 / 0.0577	0.1070 / 0.1636	†0.1212 / 0.1377
CosRec [22]	0.0248 / 0.0423	0.0241 / 0.0304	0.0634 / †0.0979	†0.0518 / †0.0649	0.0757 / 0.1206	0.0857 / 0.0994
LSTPR $(n = 5)$	0.0519 / 0.0801	0.0485 / 0.0581	0.0670 / 0.1008	0.0558 / 0.0687	0.1399 / 0.2070	0.1524 / 0.1722
LSTPR $(n = 10)$	0.0478 / 0.0771	0.0443 / 0.0544	0.0649 / 0.1015	0.0525 / 0.0665	0.1362 / 0.2083	0.1476 / 0.1698
LSTPR ($n = 15$)	0.0444 / 0.0729	0.0404 / 0.0504	0.0642 / 0.0990	0.0488 / 0.0622	0.1304 / 0.2019	0.1405 / 0.1630
Improv. (%)	+20.13% / +11.10%-	+36.62% / +25.76%	+5.68% / +3.68%	+7.72% / +5.86% -	+19.37% / +11.69% +	-31.72% / +23.88%
Paired <i>t</i> -test	$\blacktriangle \blacktriangle / \blacktriangle \blacktriangle$	$\blacktriangle \blacktriangle / \blacktriangle \blacktriangle$	$\blacktriangle \blacktriangle / \blacktriangle$			

Conclusion

Conclusion

- Short-term preferences do exist, but they are not always beneficial to recommendation performances.
- Based on the analyses, we propose LSTPR, which efficiently and effectively leverages long-short term preferences and high-order graph information at the same time.
- LSTPR outperforms seven strong baselines with a significant margin on the three datasets.

Thanks for listening!

If you have any question, please feel free to contact us! Github: https://github.com/cnclabs/codes.lstp.rec Chih-Hen Lee: ch.lee@citi.sinica.edu.tw Jun-En Ding: ding1119@citi.sinica.edu.tw Chih-Ming Chen: 104761501@nccu.edu.tw