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Problem Statement

Given a multiplex behavior session s, which contains

ltem sequence fiiinesily]
Action sequence [ay, ..., a;]

predict the next item i:+1 and its corresponding next action @+,
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Motivations

Limitations of existing work

Concentrate on single action type of next item
Encode item and action sequences separately with similar algorithms

Multiplex behavior sessions

Next interaction
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reformulation

Item-wise action sequences



Contributions

Propose an action-aware network multi-behavior recommender (APANet) to predict
not only next item but also next action

Identify the importance of modeling item-wise action sequences and propose a way
to model such patterns

Demonstrate effectiveness of methods in APANet by extensive experiments on three
datasets



Notations

Given

Session set §,ltemset I = {i1,...,%,},Actionset A ={ay,...,a,}
Define

Session S represented as index sequences [(z1,1), (Z2,%2),- - -, (¢, yt)]

zr € {1,2,...,m},yx € {1,2,...,n}
i, € I,ay €A
Action patternset B = {b1,ba,...,b,},e.g. b1 = [a1,a2]

iz lj iZ iZ
)
a,as, az, as lai] [as] [ag,a;] lag,ayas]

Action sequence Action pattern (accumulated action sequence per item)



Model: APANet

Multi-behavior Session Encoding (Sec. 3.2)

Item sequence
(e.g.. z(s) =[1,3,2.1])

Action sequence
(e.g. y(s)=[1,1,1,2])

reformulation
Item-wise action-pattern sequence
[b1., b2, b3, ba] = [[a1], [a1], [a1]. [@1. a2]]

[ilai:%:i217:1]— \ /2 md

i
i

i

i

i

;

i

i ar.ar.a9. a9 .

! lkLCIlOH sequence
i

i

i

i

i

i

i

i

i

i

:

2 ) o
2| Iz - oy, |
Z :
- E
ion-related embedding, Icaming‘:
[— |

=>|01 ... O |
2 :
s E

= | by b; |1
— E

Action-aware Session
Representation Learning (Sec. 3.3)
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Conditional Multiplex Behavior
Session Modeling (Sec. 3.4)
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Prediction Layer
(Sec. 3.5)

Next-item predictor

XBujos

Next-action predictor
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Multi-task Training
(Sec. 3.6)

— ['item

Z" Ejoint

—> )\Eaction




Proposed Methods

@

Multi-behavior session encoding

Item embedding learning

Action-related embedding learning

Conditional multiplex behavior
session modeling

Next action prediction given specific item

Ao

Action-aware session
representation learning

Next item prediction considering the action pattern

Multi-task learning

Optimize both item and action prediction
simultaneously



Multi-behavior session encoding

Item embedding

Item sequence

(ex. z(s) = [1,3,2,1]) @
11,13, 72,11 '@
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Action-related embedding learning

Action sequence ai,ai,ai,as
(ex. y(s) =1[1,1,1,2])

Item-wise
action-pattern sequence bl’ b2’ b3’ b4

(la1], [a1], [a1], [a1, a2])

Outgoing edges Incoming edges
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Action-aware Session Representation Learning
for Next-item Prediction

Position Embedding

Item Embedding
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Action Pattern @
Embedding by ... by g
1. Combine action embeddings 2. Learn attention weights 3. Compute item scores
—ql t
u, = dropout(RELU(oy Il by)U, + q53)) ar = qso(Wyhye + Wiss' + qg) o = Z o d
s = kYk
dp = iy, +ug hy = tanh(dy Il pr—x+1Us + q4) i=1
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Conditional Multiplex Behavior Session Modeling
for Next-action Prediction

Action Intention > 1. Learn session-level action intention
Z
g > u, = RELU((oy I b)Ug + q;)
g (B @om
) s <)
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iy,,,predicted next item embedding

b;,.:action pattern embedding 3. Compute action scores

~ T
9 = softmax (sg4 ai)

10



Multi-task Learning

Total loss: combination of the cross entropy loss of the two predictors

I
Laction = _zyil log(yil) o (1 - yil)log(l - yll)
|A|i=1 Ljoint = Litem* ALaction
Laction == ) wiyflog(9") + (1 = y{log(1 - 9
{=1

Control parameters

w;: penalty weight of each type of action g;

A: multi-task learning weight

11



Experiment Results: Next-Item Prediction

APANet outperforms baseline HR@20
models on 3 datasets 80
All methods predict badly on KKBOX 70

datasets due to its different data 60

properties %0

APANet achieves the most significant v

improvements for KKBOX, yielding ”

21.88% of HR@20 (KKBOX has 8 ) I

action types) ) 1 | |

RetailRocket Yoochoose KKBOX

B FPMC ®NARM ®CSRM MSR SRGNN ® GCEGNN ® APANet (Ours)
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Experiment Results: Next-Item and Next-Action Prediction

Next-best prediction is considered correct if both the item and the action match
the ground truth
The proposed APANet outperforms the compared methods (especially on KKBOX

dataset)

IA_HR@20

RetailRocket

Yoochoose

KKBOX

RetailRocket

IA_MRR@20

Yoochoose

KKBOX

B APANet-random action
(with uniform distribution)

m APANet-random action
(with action distribution)

B GCEGNN-random action
(with action distribution)

APANet
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Ablation study: Effectiveness of APANet's components

Overall performance decline after discarding any individual component of the
model, indicating the significance of these components in the design

Model setting KKBOX RetailRocket

HR@20 MRR@20 IA HR@20 IA MRR@20 HR@20 MRR@20 IA HR@20 IA_MRR@20
(1) W/o act_pattern_emb 9.813 2.065 6.853 1.395 55.211 37.933 49.886 30.634
(2) W/o act_seq_emb 10.201 2411 8.830 1.864 56.419 38.025 51.137 33.240
(3) W/o pos_emb 7.430 2.040 5.149 1.079 54.905 37.881 49.183 30.271
(4) Next-action predictor  11.876 2.879 - - 55.420 38.127 - -

APANet 11.183 3.182 9.446 1.881 57.001 38.735 51.790 34.475




APANet Applications

For users:
Enhancing customer experience

Predicting user’s next move
E.g. gaming, shopping

OC=—1

AP

=1

For company:
Precision marketing

Identifying potential customers
Difference advertising

Q@
3
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Conclusions and Future Work

Conclusions
Propose a action-aware network multi-behavior recommender (APANet) that
could predict not only the next-item but the next-action
Design item-wise action pattern reformulation and a conditional network for
action-intent generation
Demonstrate the superior performance of the model by extensive experiments
and ablation studies

©  Future work
o Introduce more side information such as item features

o  Explore the importance to user intent of different action types
o Exploring interpretability aspects
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